

Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Features

- 8-bit High Speed Single/ Dual ADC Single Channel Mode: FSmax = 900 MSPS Dual Channel Mode: FSmax = 450 MSPS
- Integrated Cross Point Switches (Mux Array)
- 1X to 50X Digital Gain No Missing Codes up to 32X
- 1X Gain: 48.8 dB SNR. 10X Gain: 48 dB SNR
- Internal Low Jitter Programmable Clock Divider
- Ultra Low Power Dissipation 650 mW including I/O at 900 MSPS
- 0.5 μs Start-up Time from Sleep,
 15 μs from Power Down
- Internal Reference Circuitry with no External Components Required
- · Coarse and Fine Gain Control
- Digital Fine Gain Adjustment for each ADC

- · Internal Offset Correction
- 1.8V Supply Voltage
- 1.7 3.6V CMOS Logic on Control Interface Pins
- Serial LVDS/RSDS Output
- 7x7 mm QFN 48 (LP7D) Package

Typical Applications

- · Point-to-point Microwave Links
- · Digital Oscilloscopes
- · Satellite Receivers

Related Products

- HMCAD1512 is pin compatible with HMCAD1520 and HMCAD1511
- HMCAD1511 is similar functionality as the HMCAD1512 with quad channel option and higher speed.

Functional Diagram

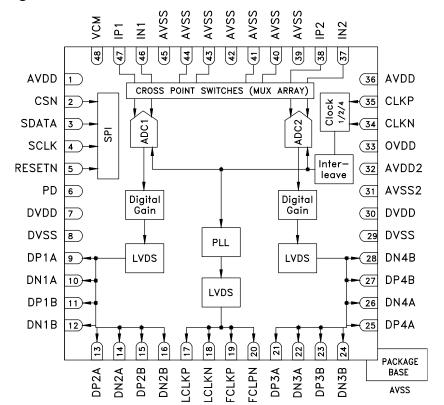


Figure 1. Functional Block Diagram

General Description

The HMCAD1512 is a versatile high performance low power analog-to-digital converter (ADC), utilizing time-interleaving to increase sampling rate. Integrated Cross Point Switches activate the input selected by the user.

The device contains 2 ADCs that can be interleaved by the user to act as a single channel or two channels. In single channel mode, either of the two inputs can be selected as a valid input to the single ADC channel. In dual channel mode, either of the two inputs can be selected for each ADC channel. (The HMCAD1512 does not support the quadchannel mode. The HMCAD1511 should be used for this purpose).

An internal, low jitter and programmable clock divider makes it possible to use a single clock source for all operational modes.

The HMCAD1512 is based on a proprietary structure, and employs internal reference circuitry, a serial control interface and serial LVDS/RSDS output data. Data and frame synchronization clocks are supplied for data capture at the receiver. Internal 1 to 50X digital coarse gain with ENOB > 7.5 up to 16X gain, allows digital implementation of oscilloscope gain settings. Internal digital fine gain can be set separately for each ADC to calibrate for gain errors.

Various modes and configuration settings can be applied to the ADC through the serial control interface (SPI). Each channel can be powered down independently and data format can be selected through this interface. A full chip idle mode can be set by a single external pin. Register settings determine the exact function of this pin.

HMCAD1512 is designed to easily interface with Field Programmable Gate Arrays (FPGAs) from several vendors.

Electrical Specifications

DC Specifications

AVDD = 1.8V, DVDD = 1.8V, OVDD = 1.8V, FS = 250 MSPS, Dual Channel Mode, 50% clock duty cycle, -1 dBFS 70 MHz input signal, 1x/0 dB digital gain (fine and coarse), unless otherwise noted

Parameter	Description	Min	Тур	Max	Unit			
DC accuracy								
No missing codes		Guaranteed						
Offset	Offset error after internal digital offset correction		0.05		LSB			
G _{abs}	Gain error			±6	%FS			
G _{rel}	Gain matching between channels. ±3 sigma value at worst case conditions		±0.5		%FS			
DNL	Differential non linearity		±0.2		LSB			
INL	Integral non linearity		±0.5		LSB			
V _{CM,out}	Common mode voltage output		V _{AVDD} /2					
Analog Input		•						
V _{CM,in}	Analog input common mode voltage	V _{CM} -0.1		V _{CM} +0.2	V			
FSR	Differential input voltage full scale range		2		Vpp			
$C_{in,D}$	Differential input capacitance, Dual channel mode		7		pF			
C _{in,S}	Differential input capacitance, Single channel mode		11		pF			
Power Supply		•						
V _{AVDD}	Analog Supply Voltage	1.7	1.8	2	V			
V _{DVDD}	Digital and output driver supply voltage	1.7	1.8	2	V			
V _{OVDD}	Digital CMOS Input Supply Voltage	1.7	1.8	3.6	V			
Temperature		•						
T _A	Operating free-air temperature	-40		85	°C			

AC Specifications

AVDD = 1.8V, DVDD = 1.8V, OVDD = 1.8V, 50% clock duty cycle, -1 dBFS 71 MHz input signal, Gain = 1X, RSDS output data levels unless otherwise noted

Parameter	Description	Min	Тур	Max	Unit
Performance					
SNR	Signal to Noise Ratio, excluding interleaving spurs				
	Single Ch Mode, F _s = 900 MSPS	47.5	48.8		dBFS
	Single Ch Mode, $F_S = 900$ MSPS, $F_{IN} = 170$ MHz		48.5		dBFS
	Single Ch Mode, F _s = 900 MSPS, Gain = 10X		48		dBFS
	Dual Ch Mode, F _S = 450 MSPS	48	49		dBFS
SINAD _{incl}	Signal to Noise and Distortion Ratio, including interleaving				
SINAD _{incl}	spurs				
	Single Ch Mode, F _s = 900 MSPS		44.8		dBFS
	Dual Ch Mode, F _S = 450 MSPS		43.5		dBFS
SINAD _{excl}	Signal to Noise and Distortion Ratio, excluding interleaving spurs				
	Single Ch Mode, F _S = 900 MSPS	47	48.3		dBFS
	Single Ch Mode, F _s = 900 MSPS, F _{IN} = 170 MHz		46.5		dBFS
	Single Ch Mode, F _s = 900 MSPS, Gain = 10X		47.3		dBFS
	Dual Ch Mode, F _s = 450 MSPS	47.5	48.3		dBFS
SFDR _{incl}	Spurious Free Dynamic Range, including interleaving spurs				
1101	Single Ch Mode, F _s = 900 MSPS		49		dBc
	Dual Ch Mode, F _s = 450 MSPS		44		dBc
SFDR	Spurious Free Dynamic Range, excluding interleaving spurs				
exci	Single Ch Mode, F _c = 900 MSPS	55	64		dBc
	Single Ch Mode, F _S = 900 MSPS, F _{IN} = 170 MHz		63		dBc
	Single Ch Mode, F _s = 900 MSPS, Gain = 10X		62		dBc
	Dual Ch Mode, F _s = 450 MSPS	55	63		dBc
HD2/3	Worst of HD2/HD3				
	Single Ch Mode, F _s = 900 MSPS	60	65		dBc
	Single Ch Mode, F _S = 900 MSPS, F _{IN} = 170 MHz		65		dBc
	Single Ch Mode, F _s = 900 MSPS, Gain = 10X		63		dBc
	Dual Ch Mode, F _s = 450 MSPS	57	63		dBc
FNOB	Effective number of Bits, excluding interleaving spurs		- 55		
excl	Single Ch Mode, F _s = 900 MSPS		7.7		bits
	Single Ch Mode, $F_s = 900$ MSPS, $F_{IN} = 170$ MHz		7.4		bits
Dual C	Single Ch Mode, F _c = 900 MSPS, Gain = 10X		7.5		bits
	Dual Ch Mode, F _S = 450 MSPS		7.7		bits
$X_{tlk,2}$	CrossTalk Dual Ch Mode. Signal applied to 1 channel (F_{INO}). Measurement taken on one channel with full scale at F_{INI} .		-90		dBc
Power Supply	$F_{IN1} = 71 \text{ MHz}, F_{IN0} = 70 \text{ MHz}$ Single Ch: $F_s = 900 \text{ MS/s}, \text{ Dual Ch: } F_s = 450 \text{ MS/s}$				
	Analog Supply Current		250	1	mA
AVDD	Digital and output driver Supply Current		112		mA
DVDD D	Analog Power		450		mW
AVDD D	Digital Power		200		mW
	Total Power Dissipation		650		mW
о тот	Power Down Mode dissipation		15		
P _{PD}	·				μW
P _{SLP}	Deep sleep Mode power dissipation		72		mW
P _{SLPCH}	Power dissipation with all channels in sleep channel mode (Light sleep)		153		mW
P _{SLPCH_SAV}	Power dissipation savings per channel off (Duel Channel mode)		248		mW

AC Specifications

AVDD = 1.8V, DVDD = 1.8V, OVDD = 1.8V, 50% clock duty cycle, -1 dBFS 71 MHz input signal, Gain = 1X, RSDS output data levels unless otherwise noted

Parameter	Description	Min	Тур	Max	Unit						
Analog Input											
FPBW	Full Power Bandwidth		650		MHz						
Clock Inputs											
_	Max. Conversion Rate in Modes: Single Ch	900 /450			Mono						
F _{Smax}	Dual Ch				MSPS						
F	Min. Conversion Rate in Modes: Single Ch			120 /	MSPS						
smin	Dual Ch			60 /	IVISPS						

Digital and Switching Specifications

AVDD = 1.8V, DVDD = 1.8V, OVDD = 1.8V, RSDS output data levels, unless otherwise noted

Parameter	Description	Min	Тур	Max	Unit		
Clock Inputs							
DC	Duty Cycle	45		55	% high		
Compliance	LVDS supported up to 700 MHz	LVPECL,	Sine wave, CM	OS, LVDS			
V _{CK,sine}	Differential input voltage swing, sine wave clock input	1500			mVpp		
V _{CK,CMOS}	Voltage input range CMOS (CLKN connected to ground)		V _{OVDD}				
V _{CM,CK}	Input common mode voltage. Keep voltages within ground and voltage of OVDD	0.3		V _{OVDD} -0.3	٧		
C _{CK}	Differential Input capacitance		3		pF		
Logic inputs (CI	MOS)						
V _{HI}	High Level Input Voltage. V _{OVDD} ≥ 3.0V	2			V		
V _{HI}	High Level Input Voltage. V _{OVDD} = 1.7V - 3.0V	0.8 ·V _{OVDD}			V		
V _{LI}	Low Level Input Voltage. V _{OVDD} ≥ 3.0V	0		0.8	V		
V _{LI}	Low Level Input Voltage. V _{OVDD} = 1.7V - 3.0V	0		0.2 ·V _{OVDD}	V		
н	High Level Input leakage Current			+/-10	μA		
Lu	Low Level Input leakage Current			+/-10	μA		
C _i	Input Capacitance		3		pF		
Data Outputs					•		
Compliance			LVDS / RSDS				
V _{OUT}	Differential output voltage, LVDS		350		mV		
V _{out}	Differential output voltage, RSDS		150		mV		
V _{CM}	Output common mode voltage		1.2		V		
Output coding	Default/optional	Offset	Binary/ 2's com	plement			
Fiming Characte	ristics						
t _A	Aperture delay		1.5		ns		
t _i	Aperture jitter, One bit set to '1' in jitter_ctrl<7:0>		160		fsrms		
T _{skew}	Timing skew between ADC channels		2.5		psrms		
Γ _{su}	Start up time from Power Down Mode and Deep Sleep Mode to Active Mode in µs. See section "Clock Frequency" for details.		15		μs		
T _{SLPCH}	Start up time from Sleep Channel Mode to Active Mode				μs		
$\Gamma_{ m ovr}$	Out of range recovery time		1		clock cycle		
T _{LATHSMD}	Pipeline delay, Dual Channel Mode		64		clock cycle		
T _{LATHSMS}	Pipeline delay, Single Channel Mode		128		clock cycle		

Digital and Switching Specifications

AVDD = 1.8V, DVDD = 1.8V, OVDD = 1.8V, RSDS output data levels, unless otherwise noted

Parameter	Description	Min	Тур	Max	Unit
LVDS Output T	ming Characteristics				•
t _{data}	LCLK to data delay time (excluding programmable phase shift)		50		ps
T _{PROP}	Clock propagation delay.	6*T _{LVDS} +2.2	7*T _{LVDS} +3.5	7*T _{LVDS} +5.0	ns
	LVDS bit-clock duty-cycle	45		55	% LCLK cycle
	Frame clock cycle-to-cycle jitter			2.5	% LCLK cycle
T _{EDGE}	Data rise- and fall time 20% to 80%		0.7		ns
T _{CLKEDGE}	Clock rise- and fall time 20% to 80%		0.7		ns

Table 1: Maximum Voltage Ratings

Pin	Reference pin	Rating											
AVDD	AVSS	-0.3V to +2.3V											
DVDD	DVSS	-0.3V to +2.3V											
OVDD	AVSS	-0.3V to +3.9V											
AVSS / DVSS	DVSS / AVSS	-0.3V to +0.3V											
Analog inputs and outputs	AVSS	-0.3V to +2.3V											
CLKx	AVSS	-0.3V to +3.9V											
LVDS outputs	DVSS	-0.3V to +2.3V											
Digital inputs	DVSS	-0.3V to +3.9V											

Applying voltages to the pins beyond those specified in Table 1 could cause permanent damage to the circuit.

Table 2: Maximum Temperature Ratings

-40 to +85 °C						
-60 to +150 °C						
110 °C						
29 °C/W						
J-STD-020						
Class 1C						
Class III						

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Configuration and Description

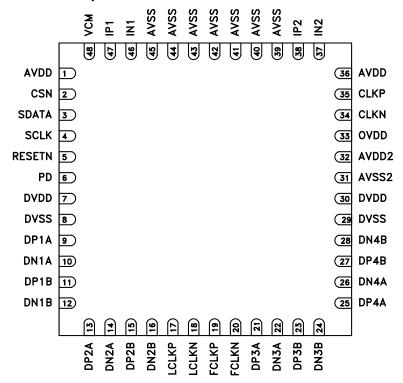


Figure 2: Package diagram

Table 3: Pin Descriptions

Pin Name	Description	Pin Number	# Of Pins
AVDD	Analog power supply, 1.8V	1, 36	2
CSN	Chip select enable. Active low	2	1
SDATA	Serial data input	3	1
SCLK	Serial clock input	4	1
RESETN	Reset SPI interface. Active low	5	1
PD	Power-down input. Activate after applying power in order to initialize the ADC correctly. Alternatively use the SPI power down feature	6	1
DVDD	Digital and I/O power supply, 1.8V	7, 30	2
DVSS	Digital ground	8, 29	2
DP1A	LVDS channel 1A, positive output	9	1
DN1A	LVDS channel 1A, negative output	10	1
DP1B	LVDS channel 1B, positive output	11	1
DN1B	LVDS channel 1B, negative output	12	1
DP2A	LVDS channel 2A, positive output	13	1
DN2A	LVDS channel 2A, negative output	14	1
DP2B	LVDS channel 2B, positive output	15	1
DN2B	LVDS channel 2B, negative output	16	1
LCLKP	LVDS bit clock, positive output	17	1
LCLKN	LVDS bit clock, negative output	18	1

Table 3: Pin Descriptions

Pin Name	Description	Pin Number	# Of Pins
FCLKP	LVDS frame clock (1X), positive output	19	1
FCLKN	LVDS frame clock (1X), negative output	20	1
DP3A	LVDS channel 3A, positive output	21	1
DN3A	LVDS channel 3A, negative output	22	1
DP3B	LVDS channel 3B, positive output	23	1
DN3B	LVDS channel 3B, negative output	24	1
DP4A	LVDS channel 4A, positive output	25	1
DN4A	LVDS channel 4A, negative output	26	1
DP4B	LVDS channel 4B, positive output	27	1
DN4B	LVDS channel 4B, negative output	28	1
AVSS2	Analog ground domain 2	31	1
AVDD2	Analog power supply domain 2, 1.8V	32	1
OVDD	Digital CMOS Inputs supply voltage	33	1
CLKN	Negative differential input clock.	34	1
CLKP	Positive differential input clock	35	1
AVSS	Analog ground	39, 40, 41, 42, 43, 44, 45	7
IN2	Negative differential input signal, channel 2	37	1
IP2	Positive differential input signal, channel 2	38	1
IN1	Negative differential input signal, channel 1	46	1
IP1	Positive differential input signal, channel 1	47	1
VCM	Common mode output pin, 0.5*AVDD	48	1

Start up Initialization

As part of the HMCAD1512 power-on sequence both a reset and a power down cycle have to be applied to ensure correct start-up initialization. Make sure that the supply voltages are properly settled before the start up initialization is being performed. Reset can be done in one of two ways:

- 1. By applying a low-going pulse (minimum 20 ns) on the RESETN pin (asynchronous).
- By using the serial interface to set the 'rst' bit high. Internal registers are reset to default values when this bit is set. The 'rst' bit is self-reset to zero. When using this method, do not apply any low-going pulse on the RESETN pin.

Power down cycling can be done in one of two ways:

- 1. By applying a high-going pulse (minimum 20 ns) on the PD pin (asynchronous).
- 2. By cycling the 'pd' bit in register 0Fhex to high (reg value '0200'hex) and then low (reg value '0000'hex).

IMPORTANT: The Operating Mode must be selected (Dual Channel or Single Channel) in register 0x31 after power-up, reset and/or power cycling.

Serial Interface

The HMCAD1512 configuration registers can be accessed through a serial interface formed by the input-only pins SDATA (serial interface data), SCLK (serial interface clock) and CSN (chip select, active low). The following occurs when CSN is set low:

- · Serial data are shifted into the chip
- At every rising edge of SCLK, the value present at SDATA is latched
- SDATA is loaded into the register every 24th rising edge of SCLK

Multiples of 24-bit words data can be loaded within a single active CSN pulse. If more than 24 bits are loaded into SDATA during one active CSN pulse, only the first 24 bits are kept. The excess bits are ignored. Every 24-bit word is divided into two parts:

- · The first eight bits form the register address
- The remaining 16 bits form the register data

Acceptable SCLK frequencies are from 20MHz down to a few hertz. Duty-cycle does not have to be tightly controlled.

Timing Diagram

Figure 4 shows the timing of the serial port interface. Table 4 explains the timing variables used in figure 4.

Figure 3: Serial Port Interface timing

Table 4: Serial Port Interface Timing Definitions

Parameter	Description	Minimum value	Unit					
t _{cs}	Setup time between CSN and SCLK	Setup time between CSN and SCLK 8 Hold time between CSN and SCLK 8						
t _{ch}	Hold time between CSN and SCLK							
t _{hi}	SCLK high time	20	ns					
t _{lo}	SCLK low time	20	ns					
t _{ck}	SCLK period	50	ns					
t _s	Data setup time	5	ns					
t _h	Data hold time	5	ns					

Timing Diagrams

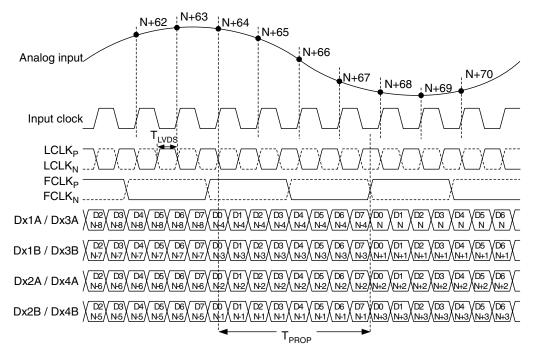


Figure 4: Dual channel - LVDS timing 8-bit output

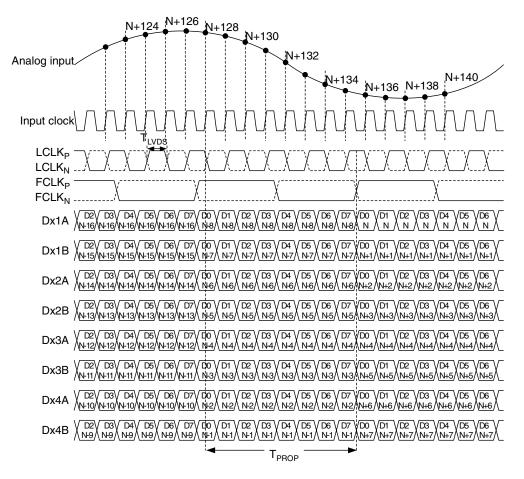


Figure 5: Single channel - LVDS timing 8-bit output

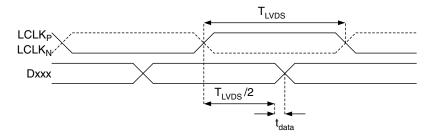


Figure 6: LVDS data timing

Register Map Summary

Table 5: Register Map

Table 5:	Register Map																		
Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
rst *	Self-clearing software reset.	Inactive																Х	0x00
sleep2_ch <2:1>	Channel-specific sleep mode for a Dual Channel setup.	Inactive											х	х					
sleep1_ch1	Channel-specific sleep mode for a Single Channel setup.	Inactive										x							
sleep	Go to sleep-mode.	Inactive								Х									0x0F
pd	Go to power-down.	Inactive							Х										
pd_pin_cfg <1:0>	Configures the PD pin function.	PD pin configured for power-down mode					x	х											
ilvds_lclk <2:0>	LVDS current drive programmability for LCLKP and LCLKN pins.	3.5 mA drive														х	х	х	
ilvds_frame <2:0>	LVDS current drive programmability for FCLKP and FCLKN pins.	3.5 mA drive										х	х	х					0x11
ilvds_dat <2:0>	LVDS current drive programmability for output data pins.	3.5 mA drive						х	х	x									
term_dat <2:0>	Programmable termination for output data buffers.	Termination disabled		1				х	х	х									
invert2_ch <2:1>	Channel specific swapping of the analog input signal for a Dual Channel setup.	IPx is positive input											x	x					0x24
invert1_ch1	Channel specific swapping of the analog input signal for a Single Channel setup.	IPx is positive input										х							UX24
en_ramp	Enables a repeating full-scale ramp pattern on the outputs.	Inactive										х	0	0					0,405
custom_pat	Enable the mode wherein the output toggles between two defined codes.	Inactive										0	х	0					0x25
bits_custom1 <7:0>	Bits for the single custom pattern and for the first code of the dual custom pattern.	0x00	х	х	х	х	х	х	х	х									0x26
bits_custom2 <7:0>	Bits for the second code of the dual custom pattern.	0x00	х	х	х	х	х	х	х	х									0x27
cgain2_ch1 <3:0>	Programmable coarse gain channel 1 in a Dual Channel setup.	1x gain													х	х	х	х	
cgain2_ch2 <3:0>	Programmable coarse gain channel 2 in a Dual Channel setup.	1x gain									х	х	х	х					0x2B
cgain1_ch1 <3:0>	Programmable coarse gain channel 1 in a Single Channel setup.	1x gain					х	х	х	х									
jitter_ctrl <7:0>	Clock jitter adjustment.	160 fsrms									х	х	х	х	х	х	х	х	0x30
channel_ num <2:0> *	Set number of channels: 1, or 2 channels.	4 channels														х	х	х	0x31
clk_divide <1:0>*	Define clock divider factor: 1, 2, 4	Divide by 1							х	x									0.01
coarse_ gain_cfg	Configures the coarse gain setting	x-gain enabled																х	0x33
fine_gain_en	Enable use of fine gain.	Disabled															х		
fgain_ branch1 <6:0>	Programmable fine gain for branch1.	0dB gain										х	х	х	х	х	х	х	0x34
fgain_ branch2 <6:0>	Programmable fine gain for branch 2.	0dB gain		х	х	х	х	х	х	х									0.834
fgain_ branch3 <6:0>	Programmable fine gain for branch 3.	0dB gain										х	х	х	х	х	х	х	0.425
fgain_ branch4 <6:0>	Programmable fine gain for branch 4.	0dB gain		х	х	х	х	х	х	х									0x35

Table 5: Register Map

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
fgain_ branch5 <6:0>	Programmable fine gain for branch 5.	0dB gain										х	х	х	х	х	х	х	0x36
fgain_ branch6 <6:0>	Programmable fine gain for branch 6.	0dB gain		х	х	х	х	х	х	х									0x36
fgain_ branch7 <6:0>	Programmable fine gain for branch 7.	0dB gain										х	х	х	х	х	х	х	007
fgain_ branch8 <6:0>	Programmable fine gain for branch 8.	0dB gain		х	х	х	х	х	х	х									0x37
inp_sel_adc1 <4:0>	Input select for adc 1.	Signal input: IP1/IN1												х	х	х	х	0	0x3A
inp_sel_adc2 <4:0>	Input select for adc 2.	Signal input: AVSS				х	х	х	х	0									UX3A
inp_sel_adc3 <4:0>	Input select for adc 3.	Signal input: AVSS												х	х	х	х	0	0x3B
inp_sel_ adc4<4:0>	Input select for adc 4.	Signal input: IP2/ IN2				х	х	х	х	0									UX3B
phase_ddr <1:0>	Controls the phase of the LCLK output relative to data.	90 degrees										х	х						0x42
btc_mode	Binary two's complement format for ADC output data.	Straight offset binary														х			0446
msb_first	Serialized ADC output data comes out with MSB first.	LSB first													х				0x46
adc_curr <2:0>	ADC current scaling.	Nominal														Х	х	х	0450
ext_vcm_bc <1:0>	VCM buffer driving strength control.	Nominal											х	х					0x50
lvds_pd_ mode	Controls LVDS power down mode	High z-mode																х	0x52

Table 5: Register Map

	110911111111111111111111111111111111111																		
Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
low_clk_ freq *	Low clock frequency used.	Inactive													х	0	0	0	
lvds_ advance	Advance LVDS data bits and frame clock by one clock cycle	Inactive											0	х		0	0	0	0x53
lvds_delay	Delay LVDS data bits and frame clock by one clock cycle	Inactive											х	0		0	0	0	
fs_cntrl <5:0>	Fine adjust ADC full scale range	0% change											х	х	х	х	Х	х	0x55
startup_ctrl <2:0> *	Controls start-up time.	'000'														Х	Х	Х	0x56

Undefined register addresses must not be written to; incorrect behavior may be the result.

Unused register bits (blank table cells) must be set to '0' when programming the registers.

All registers can be written to while the chip is in power down mode.

* These registers require a power down cycle when written to (See Start up Initialization).

Register Description

Software Reset

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
rst	Self-clearing software reset.	Inactive																х	0x00

Setting the rst register bit to '1', restores the default value of all the internal registers including the rst register bit itself.

Modes of Operation and Clock Divide Factor

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
channel_ num <1:0>	Set number of channels: 1or 2 channels.	4 channels														х	Х	x	0x31
clk_divide <1:0>	Define clock divider factor: 1, 2, or 4	Divide by 1							х	х									UX31

The HMCAD1512 has three main operating modes controlled by the register bits channel_num<2:0> as defined in table 6. Power down mode, as described in section 'Startup Initialization', must be activated after or during a change of operating mode to ensure correct operation. All active operating modes utilize interleaving to achieve high sampling speed. Dual channel mode interleaves 2 ADCs each, while single channel mode interleaves all 4 ADCs.

Table 6: Modes of operation

chanr	nel_num	<2:0>	Mode of operation	Description
0	0	1	Single channel	Single channel by interleaving ADC1 to ADC4
0	1	0	Dual channel	Dual channel where channel 1 is made by interleaving ADC1 and ADC2, channel 2 by interleaving ADC3 and ADC4
1	0	0	Quad channel	Mode not supported on HMCAD1512.

Only one of the 3bits should be activated at the same time.

clk_divide<1:0> allows the user to apply an input clock frequency higher than the sampling rate. The clock divider will divide the input clock frequency by a factor of 1, 2, 4 defined by the clk_divide<1:0> register. By setting the clk_divide<1:0> value relative to the channel_num<2:0> value, the same input clock frequency can be used for all settings on number of channels. e.g. When increasing the number of channels from 1 to 2, the maximum sampling rate is reduced by a factor of 2. By letting clk_divide<1:0> follow the channel_num<2:0> value, and changing it from 1 to 2, the internal clock divider will provide the reduction of the sampling rate without changing the input clock frequency.

Table 7: Clock Divider Factor

clk_divide<1:0>	Clock Divider Factor	Sampling rate (FS)
00 (default)	1	Input clock frequency / 1
01	2	Input clock frequency / 2
10	4	Input clock frequency / 4
11	n/a	Do not use

Input Select

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
inp_sel_adc1 <4:0>	Input select for adc 1.	Signal input: IP1/IN1												Х	х	х	х	0	0x3A
inp_sel_adc2 <4:0>	Input select for adc 2.	Signal input: AVSS				х	Х	х	х	0									UXSA
inp_sel_adc3 <4:0>	Input select for adc 3.	Signal input: AVSS												х	х	х	х	0	0x3B
inp_sel_adc4 <4:0>	Input select for adc 4.	Signal input: IP2/IN2				Х	Х	Х	х	0									UX3B

Each ADC is connected to the two input signals via a full flexible cross point switch, set up by inp_sel_adcx. In single channel mode, any one of the two inputs can be selected as valid input to the single ADC channel. In dual channel mode, either of the two inputs can be selected to each ADC channel. The switching of inputs can be done during normal operation, and no additional actions are needed. The switching will occur instantaneously at the end of each SPI command.

Table 8: Select

inp_sel_adcx<4:0>	Selected Input
0001 0	IP1/IN1
0010 0	AVSS (pins 43, 44)
0100 0	AVSS (pins 40, 41)
1000 0	IP2/IN2
other	Do not use

On the HMCAD1512, if the dual-channel mode is selected in register 0x31, the input selection for ADC1 and ADC2 must be: 00010 (i.e., IP1/IN1); the input selection for ADC3 and ADC4 must be: 10000 (i.e., IP2/IN2). In the single-channel mode, the input selection for all ADCs may be either 00010 (i.e., IP1/IN1) OR 10000 (i.e., IP2/IN2).

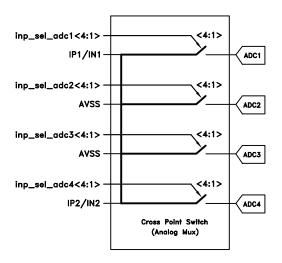


Figure 8: ADC input signals through Cross Point Switch

Full-Scale Control

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
fs_cntrl <5:0>	Fine adjust ADC full scale range	0% change											Х	х	х	х	х	Х	0x55

The full-scale voltage range of HMCAD1512 can be adjusted using an internal 6-bit DAC controlled by the fs_cntrl register. Changing the value in the register by one step, adjusts the full-scale range by approximately 0.3%. This leads to a maximum range of ±10% adjustment. Table 9 shows how the register settings correspond to the full-scale range. Note that the values for full-scale range adjustment are approximate. The DAC is, however, guaranteed to be monotonous.

The full-scale control and the programmable gain features differ in two major ways:

- 1. The full-scale control feature controls the full-scale voltage range in an analog fashion, whereas the programmable gain is a digital feature.
- 2. The programmable gain feature has much coarser gain steps and larger range than the full-scale control.

Table 9: Register Values with Corresponding Change in Full-Scale Range

fs_cntrl<5:0>	Full-Scale Range Adjustment
111111	9.70%
111110	9.40%
100001	0.30%
100000	0%
011111	-0.3%
000001	-9.7%
000000	-10%

Current Control

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
adc_curr<2:0>	ADC current scaling.	Nominal														Х	х	Х	0x50
ext_vcm_bc<1:0>	VCM buffer driving strength control.	Nominal											Х	Х					0680

There are two registers that impact performance and power dissipation.

The adc_curr register scales the current consumption in the ADC core. The performance is guaranteed at the nominal setting. Lower power consumption can be achieved by reducing the adc_curr value, see table 10. The impact on performance is low for settings down to minimum, but will depend on the ADC sampling rate.

Table 10: ADC Current Control Settings

adc_curr<2:0>	ADC Core Current
100	-40% (lower performance)
101	-30%
110	-20%
111	-10%
000 (default)	Nominal
001	Do not use
010	Do not use
011	Do not use

The ext_vcm_bc register controls the driving strength in the buffer supplying the voltage on the VCM pin. If this pin is not in use, the buffer can be switched off. If current is drawn from the VCM pin, the driving strength can be increased to keep the voltage on this pin at the correct level.

Table 11: External Common Mode Voltage Buffer Driving Strength

ext_vcm_bc<1:0>	VCM buffer driving strength (μA) Max current sinked/sourced from VCM pin with < 20 mV voltage change.
00	Off (VCM floating)
01 (default)	±20
10	±400
11	±700

Start-up and Clock Jitter Control

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
startup_ctrl<2:0>	Controls start-up time.	'000'														Х	Х	Χ	0x56
jitter_ctrl<7:0>	Clock jitter adjustment.	160 fsrms									Χ	Χ	Х	Χ	Х	Х	Х	Χ	0x30

To optimize start up time, a register is provided where the start-up time in number of clock cycles can be set. Some internal circuitry have start up times that are clock frequency independent. Default counter values are set to accommodate these start up times at the maximum clock frequency (sampling rate). This will lead to increased start up times at low clock frequencies. Setting the value of this register to the nearest higher clock frequency will reduce the count values of the internal counters, to better fit the actual start up time, such that the start up time will be reduced. The start up times from power down and sleep modes are changed by this register setting. If the clock divider is used (set to other than 1), the input clock frequency must be divided by the divider factor to find the correct clock frequency range (see table 7).

Table 12: Start-Up Time Control Settings

<u> </u>											
	Single (Channel									
startup_ctrl <2:0>	Clock frequency range (MSPS)	Startup Delay (clock cycles)	Startup delay (µs)								
100	640 - 900	12288	12.3 - 19.2								
000	400 - 640	7936	12.4 - 19.8								
001	260 - 400	5120	12.8 - 19.7								
101	160 - 260	3360	12.9 - 21								
011	120 - 160	2080	13 - 17.3								
other	Do not use	=	-								

	Dual Channel									
startup_ctrl <2:0>	Clock Frequency Range (MSPS)	Startup Delay (clock cycles)	Startup Delay (µs)							
100	320 - 450	6144	12.3 - 19.2							
000	200 - 320	3968	12.4 - 19.8							
001	130 – 200	2560	12.8 - 19.7							
101	80 - 130	1680	12.9 - 21							
011	60 – 80	1040	13 - 17.3							
other	Do not use	-	-							

jitter_ctrl<7:0> allows the user to set a trade-off between power consumption and clock jitter. If all bits in the register is set low, the clock signal is stopped. The clock jitter depends on the number of bits set to '1' in the jitter_ctrl<7:0> register. Which bits are set high does not affect the result.

Table 13: Clock Jitter Performance

Number of bits to '1' in jitter_ctrl<7:0>	Clock Jitter Performance (fsrms)	Module Current Consumption (mA)
1	160	1
2	150	2
3	136	3
4	130	4
5	126	5
6	124	6
7	122	7
8	120	8
0	Clock stopped	

LVDS Output Configuration and Control

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
low_clk_freq	Low clock frequency used.	Inactive													х	0	0	0	
lvds_advance	Advance LVDS data bits and frame clock by one clock cycle	Inactive											0	х		0	0	0	0x53
lvds_delay	Delay LVDS data bits and frame clock by one clock cycle	Inactive											х	0		0	0	0	
phase_ddr<1:0>	Controls the phase of the LCLK output relative to data.	90 degrees										х	х						0x42
btc_mode	Binary two's complement format for ADC output data.	Straight offset binary														х			0446
msb_first	Serialized ADC output data comes out with MSB first.	LSB first													х				0x46

The HMCAD1512 uses an 8-bit serial LVDS output interface as shown in the Timing Diagrams section. The different selection of number of channels uses the LVDS outputs as defined by table 14.

Table 14: Use of LVDS Outputs

Channel Set-Up	LVDS Outputs Used
Single channel	D1A, D1B, D2A, D2B, D3A, D3B, D4A, D4B
Dual channel, channel 1	D1A, D1B, D2A, D2B
Dual channel, channel 2	D3A, D3B, D4A, D4B

Maximum data output bit-rate for HMCAD1512 is 900 Mbps. The maximum sampling rate for the different configurations is given by table 15. The sampling rate is set by the frequency of the input clock (FS). The frame-rate, i.e. the frequency of the FCLK signal on the LVDS outputs, depends on the selected mode and the sampling frequency (FS) as defined in table 16.

Table 15: Maximum Sampling Rate for Different HMCAD1512 Configurations

Product	Single Channel (MSPS)	Dual Channel (MSPS)
HMCAD1512	900	450

Table 16: Output Data Frame Rate

Mode of Operation	Frame-Rate (FCLK Frequency)
Single channel	F _s /8
Dual channel	F _s /4

If the HMCAD1512 device is used at a low sampling rate the register bit low_clk_freq has to be set to '1'. See table 17 for when to use this register bit for the different modes of operation.

Table 17: Use of Register Bit low_clk_freq

Mode of Operation	Limit When low_clk_freq Should Be Activated
Single channel	F _s < 240 MHz
Dual channel	F _s < 120 MHz
Quad channel	F _s < 60 MHz

To ease timing in the receiver when using multiple HMCAD1512, the device has the option to adjust the timing of the output data and the frame clock. The propagation delay with respect to the ADC input clock can be moved one LVDS clock cycle forward or backward, by using lvds_delay and lvds_advance, respectively. See figure 10 for details. Note that LCLK is not affected by lvds_delay or lvds_advance settings.

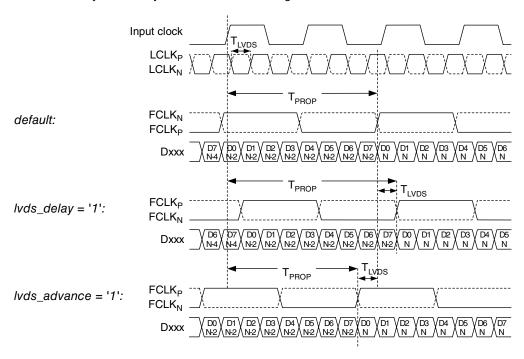


Figure 9: LVDS output timing adjustment

The LVDS output interface of HMCAD1512 is a DDR interface. The default setting is with the LCLK rising and falling edge transitions in the middle of alternate data windows. The phase for LCLK can be programmed relative to the output frame clock and data bits using phase_ddr<1:0>. The LCLK phase modes are shown in figure 11. The default timing is identical to setting phase_ddr<1:0>='10'.

PHASE_DDR<1:0>='00' (270 deg)	PHASE_DDR<1:0>='01' (180 deg)
FCLK _N	FCLK _N
FCLK _P /	FCLK _P
LCLK _P	LCLK _N V
LCLK _N \ \ \\	LCLK _P
Dxx<1:0>	Dxx<1:0>
PHASE_DDR<1:0>='10' (90 deg)	PHASE_DDR<1:0>='11' (0 deg)
PHASE_DDR<1:0>='10' (90 deg)	PHASE_DDR<1:0>='11' (0 deg)
	_
FCLK _N	FCLK _N

Figure 10: Phase programmability modes for LCLK

The default data output format is offset binary. Two's complement mode can be selected by setting the btc_mode bit to '1' which inverts the MSB.

The first bit of the frame (following the rising edge of FCLKP) is the LSB of the ADC output for default settings. Programming the msb_first mode results in reverse bit order, and the MSB is output as the first bit following the FCLKP rising edge.

LVDS Drive Strength Programmability

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
ilvds_lclk <2:0>	LVDS current drive programmability for LCLKP and LCLKN pins.	3.5 mA drive														х	Х	х	
ilvds_frame <2:0>	LVDS current drive programmability for FCLKP and FCLKN pins.	3.5 mA drive										х	х	х					0x11
ilvds_dat <2:0>	LVDS current drive programmability for output data pins.	3.5 mA drive						х	х	х									

The current delivered by the LVDS output drivers can be configured as shown in table 18. The default current is 3.5mA, which is what the LVDS standard specifies.

To reduce power consumption in the HMCAD1512, Reduced Swing Data Signaling (RSDS), is recommended. The output current drive setting should then be 1.5 mA.

Setting the ilvds_lclk<2:0> register controls the current drive strength of the LVDS clock output on the LCLKP and LCLKN pins.

Setting the ilvds_frame<2:0> register controls the current drive strength of the frame clock output on the FCLKP and FCLKN pins.

Setting the ilvds_dat<2:0> register controls the current drive strength of the data outputs on the D[8:1]P and D[8:1]N pins.

Table 18: LVDS Output
Drive Strength for LCLK, FCLK & Data

_	
ilvds_*<2:0>	LVDS Drive Strength
000	3.5 mA (default)
001	2.5 mA
101	1.5 mA (RSDS)
011	0.5 mA
100	7.5 mA
101	6.5 mA
110	5.5 mA
111	4.5 mA

Power Mode Control

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
sleep2_ch <2:1>	Channel-specific sleep mode for a Dual Channel setup.	Inactive											Х	х					
sleep1_ch1	Channel-specific sleep mode for a Single Channel setup.	Inactive										х							
sleep	Go to sleep-mode.	Inactive								х									0x0F
pd	Go to power-down.	Inactive							Х										
pd_pin_cfg <1:0>	Configures the PD pin function.	PD pin configured for power-down mode					х	х											
lvds_pd_mode	Controls LVDS power down mode	High z-mode																Х	0x52

The HMCAD1512 device has several modes for power management, from sleep modes with short start up time to full power down with extremely low power dissipation. There are two sleep modes, both with the LVDS clocks (FCLK, LCLK) running, such that the synchronization with the receiver is maintained. The first is a light sleep mode (sleep*_ ch) with short start up time, and the second a deep sleep mode (sleep) with the same start up time as full power down.

Setting sleep2_ch<n> = '1' sets channel <n> in a Dual Channel setup in sleep mode. Setting sleep1_ch1 = '1' sets the ADC channel in a Single Channel setup in sleep mode. This is a light sleep mode with short start up time.

Setting sleep = '1', puts all channels to sleep, but keeps FCLK and LCLK running to maintain LVDS synchronization. The start up time is the same as for complete power down. Power consumption is significantly lower than for setting all channels to sleep by using the sleep* ch register.

Setting pd = '1' completely powers down the chip, including the band-gap reference circuit. Start-up time from this mode is significantly longer than from the sleep*_ch mode. The synchronization with the LVDS receiver is lost since LCLK and FCLK outputs are put in high-Z mode.

Setting pdn_pin_cfg<1:0> = 'x1' configures the circuit to enter sleep channel mode (all channels off) when the PD pin is set high. This is equal to setting all channels to sleep by using sleep*_ch. The channels can not be powered down separately using the PD pin. Setting pdn_pin_cfg<1:0> = '10' configures the circuit to enter (deep) sleep mode when the PD pin is set high (equal to setting sleep='1'). When pdn_pin_cfg<1:0>= '00', which is the default, the circuit enters the power down mode when the PD pin is set high.

The lvds_pd_mode register configures whether the LVDS data output drivers are powered down or kept alive in sleep and sleep channel modes. LCLK and FCLK drivers are not affected by this register, and are always on in sleep and sleep channel modes. If lvds_pd_mode is set low (default), the LVDS output is put in high Z mode, and the driver is completely powered down. If lvds_pd_mode is set high, the LVDS output is set to constant 0, and the driver is still on during sleep and sleep channel modes.

Programmable Gain

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
cgain_cfg	Configures the coarse gain setting	x-gain enabled																х	0x33
fine_gain_en	Enable use of fine gain.	Disabled															х		
cgain2_ch1 <3:0>	Programmable coarse gain channel 1 in a Dual Channel setup.	1x gain													х	х	х	х	
cgain2_ch2 <3:0>	Programmable coarse gain channel 2 in a Dual Channel setup.	1x gain									х	х	Х	х					0x2B
cgain1_ch1 <3:0>	Programmable coarse gain channel 1 in a 1 channel setup.	1x gain					х	х	х	х									
fgain_branch1<6:0>	Programmable fine gain for branch1.	0dB gain										Х	Х	Х	Х	Х	Х	Х	0,40.4
fgain_branch2<6:0>	Programmable fine gain for branch 2.	0dB gain		Х	Х	Х	Х	Х	Х	Х									0x34
fgain_branch3<6:0>	Programmable fine gain for branch 3.	0dB gain										Х	Х	Х	Х	Х	х	х	005
fgain_branch4<6:0>	Programmable fine gain for branch 4.	0dB gain		Х	Х	Х	Х	Х	Х	Х									0x35
fgain_branch5<6:0>	Programmable fine gain for branch 5.	0dB gain										Х	Х	Х	Х	Х	Х	Х	0x36
fgain_branch6<6:0>	Programmable fine gain for branch 6.	0dB gain		Х	Х	Х	Х	Х	Х	Х									UX36
fgain_branch7<6:0>	Programmable fine gain for branch 7.	0dB gain										Х	Х	Х	Х	Х	Х	Х	0x37
fgain_branch8<6:0>	Programmable fine gain for branch 8.	0dB gain		Х	Х	Х	Х	Х	Х	Х									UX37

The device includes a digital programmable gain in addition to the Full-scale control. The programmable gain of each channel can be individually set using a four bit code, indicated as cgain*<3:0>. The gain is configured by the register cgain_cfg, when cgain_cfg equals '0' a gain in dB steps is enabled as defined in table 20 otherwise if cgain_cfg equals '1' the gain is defined by table 21. There will be no missing codes for gain settings lower than 32x (30dB), due to higher than 8 bit resolution internally.

Table 19: Gain setting - dB Step

cgain_cfg	cgain*<3:0>	Implemented Gain (dB)
0	0000	0
0	0001	1
0	0010	2
0	0011	3
0	0100	4
0	0101	5
0	0110	6
0	0111	7
0	1000	8
0	1001	9
0	1010	10
0	1011	11
0	1100	12
0	1101	Not used
0	1110	Not used
0	1111	Not used

Table 20: Gain Setting – x Step

cgain_cfg	cgain*<3:0>	Implemented Gain Factor (x)
1	0000	1
1	0001	1.25
1	0010	2
1	0011	2.5
1	0100	4
1	0101	5
1	0110	8
1	0111	10
1	1000	12.5
1	1001	16
1	1010	20
1	1011	25
1	1100	32
1	1101	50
1	1110	Not used
1	1111	Not used

There is a digital fine gain implemented for each ADC to adjust the fine gain errors between the ADCs. The gain is controlled by fgain_branch* as defined in table 22. There will be no missing codes when using digital fine gain, due to higher resolution internally.

To enable the fine gain function the register bit fine_gain_en has to be activated, set to '1'.

Table 21: Fine Gain Setting

		fgain_	branch	x<6:0>			Arithmetic Function	Implemented Gain (x)	Gain (dB)
0	1	1	1	1	1	1	OUT = $(1 + 2^{-8} + 2^{-9} + 2^{-10} + 2^{-11} + 2^{-12} + 2^{-13}) * IN$	1.0077	0.0665
0	1	1	1	1	1	0	OUT = $(1 + 2^{-8} + 2^{-9} + 2^{-10} + 2^{-11} + 2^{-12}) * IN$	1.0076	0.0655
0	1	1	1	1	0	1	OUT = $(1 + 2^{-8} + 2^{-9} + 2^{-10} + 2^{-11} + 2^{-13}) * IN$	1.0074	0.0644
0	1	1	1	1	0	0	OUT = $(1 + 2^{-8} + 2^{-9} + 2^{-10} + 2^{-11}) * IN$	1.0073	0.0634
0	0	0	0	0	1	1	OUT = (1 + 2 ⁻¹² + 2 ⁻¹³) * IN	1.0004	0.0031
0	0	0	0	0	1	0	OUT = (1 + 2 ⁻¹²) * IN	1.0002	0.0021
0	0	0	0	0	0	1	OUT = (1 + 2 ⁻¹³) * IN	1.0001	0.001
0	0	0	0	0	0	0	OUT = IN	1.0000	0.0000
1	1	1	1	1	1	1	OUT = IN	1.0000	0.0000
1	1	1	1	1	1	0	OUT = (1 - 2 ⁻¹³) * IN	0.9999	-0.0011
1	1	1	1	1	0	1	OUT = (1 - 2 ⁻¹²) * IN	0.9998	-0.0021
1	1	1	1	1	0	0	OUT = (1 - 2 ⁻¹² - 2 ⁻¹³) * IN	0.9996	-0.0032
1	0	0	0	0	1	1	OUT = (1 - 2 ⁻⁸ - 2 ⁻⁹ - 2 ⁻¹⁰ - 2 ⁻¹¹) * IN	0.9927	-0.0639
1	0	0	0	0	1	0	OUT = (1 - 2 ⁻⁸ - 2 ⁻⁹ - 2 ⁻¹⁰ - 2 ⁻¹¹ - 2 ⁻¹³) * IN	0.9926	-0.0649
1	0	0	0	0	0	1	OUT = (1 - 2 ⁻⁸ - 2 ⁻⁹ - 2 ⁻¹⁰ - 2 ⁻¹¹ - 2 ⁻¹²) * IN	0.9924	-0.0660
1	0	0	0	0	0	0	OUT = $(1 - 2^{-8} - 2^{-9} - 2^{-10} - 2^{-11} - 2^{-12} - 2^{-13}) * IN$	0.9923	-0.0670

Analog Input Invert

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
invert2_ch <2:1>	Channel specific swapping of the analog input signal for a Dual Channel setup.	IPx is positive input											х	Х					0x24
invert1_ch1	Channel specific swapping of the analog input signal for a 1 channel setup.	IPx is positive input										х							UX24

The IPx pin represents the positive analog input pin, and INx represents the negative (complementary) input. Setting the bits marked invertx_ch<n:1> (individual control for each channel) causes the inputs to be swapped. INx would then represent the positive input, and IPx the negative input.

LVDS Test Patterns

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	DЗ	D2	D1	D0	Hex Address
en_ramp	Enables a repeating full-scale ramp pattern on the outputs.	Inactive										х	0	0					0x25
custom_pat	Enable the mode wherein the output toggles between two defined codes.	Inactive										0	х	0					0.25
bits_custom1 <7:0>	Bits for the single custom pattern and for the first code of the dual custom pattern. <0> is the LSB.	0x00	х	х	x	х	х	х	х	х									0x26
bits_custom2 <7:0>	Bits for the second code of the dual custom pattern.	0x00	х	х	х	х	х	х	х	х									0x27

To ease the LVDS synchronization setup of HMCAD1512, several test patterns can be set up on the outputs. Normal ADC data are replaced by the test pattern in these modes. Setting en_ramp to '1' sets up a repeating full-scale ramp pattern on all data outputs. The ramp starts at code zero and is increased 1LSB every clock cycle. It returns to zero code and starts the ramp again after reaching the full-scale code.

The device may also be made to alternate between two user-defined codes by programming custom_pat to '1'. The two codes are the contents of bits_custom1<7:0> and bits_custom2<7:0>.

For normal operation, field <D6:D4> of register 0x25 should be set to 111b, which is the default value of this field upon reset.

Note: Only one of the above patterns should be selected at the same time.

Theory of Operation

HMCAD1512 is a multi Mode high-speed, CMOS ADC, consisting of 8 ADC branches, configured in different channel modes, using interleaving to achieve high speed sampling. For all practical purposes, the device can be considered to contain 4 ADCs. Fine gain is adjusted for each of the eight branches separately.

HMCAD1512 utilizes a serial LVDS output, described in 'Register Description, Output Configuration and Control'. The clocks needed (FCLK, LCLK) for the LVDS interface are generated by an internal PLL.

The HMCAD1512 operate from one clock input, which can be differential or single ended. The sampling clocks for each of the four channels are generated from the clock input using a carefully matched clock buffer tree. Internal clock dividers are utilized to control the clock for each ADC during interleaving. The clock tree is controlled by the Mode of operations.

HMCAD1512 uses internally generated references. The differential reference value is 1V. This results in a differential input of -1V to correspond to the zero code of the ADC, and a differential input of +1V to correspond to the full-scale code (code 255).

The ADC employs a Pipeline converter architecture. Each Pipeline Stage feeds its output data into the digital error correction logic, ensuring excellent differential linearity and no missing codes.

HMCAD1512 operates from two sets of supplies and grounds. The analog supply and ground set is identified as AVDD and AVSS, while the digital set is identified by DVDD and DVSS.

Interleaving Effects and Sampling Order

Interleaving ADCs will generate interleaving artifacts caused by gain, offset and timing mismatch between the ADC branches. The design of HMCAD1512 has been optimized to minimize these effects. It is not possible, though, to eliminate mismatch completely, such that additional compensation may be needed, especially when using high digital gain settings. The internal digital fine gain control may be used to compensate for gain errors between the ADC branches. Due to the optimization of HMCAD1512 there is not a one-to-one correspondence between the sampling order, LVDS output order and the branch number. Tables 23, 24 and 25 give an overview of the corresponding branches, LVDS outputs and sampling order for the different high speed modes.

Table 22: Dual Channel Mode

Channel #	Sampling Order	LVDS Output	Fine Gain Branch
	1	D1A	1
	2	D1B	3
'	3	D2A	2
	4	D2B	4
	1	D3A	5
	2	D3B	7
2	3	D4A	6
	4	D4B	8

Table 23: Single Channel Mode

	····g. · · · · ·		
Channel #	Sampling Order	LVDS Output	Fine Gain Branch
	1	D1A	1
	2	D1B	6
	3	D2A	2
4	4	D2B	5
'	5	D3A	8
	6	D3B	3
	7	D4A	7
	8	D4B	4

Recommended Usage

Analog Input

The analog input to HMCAD1512 ADC is a switched capacitor track-and-hold amplifier optimized for differential operation.

Operation at common mode voltages at mid supply is recommended even if performance will be good for the ranges specified. The VCM pin provides a voltage suitable as common mode voltage reference. The internal buffer for the VCM voltage can be switched off, and driving capabilities can be changed programming the ext_vcm_bc<1:0> register.

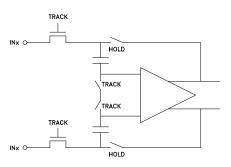


Figure 11: Input configuration

Figure 12 shows a simplified drawing of the input network. The signal source must have sufficiently low output impedance to charge the sampling capacitors within one clock cycle. A small external resistor (e.g. 22 ohm) in series with each input is recommended as it helps reducing transient currents and dampens ringing behavior. A small differential shunt capacitor at the chip side of the resistors may be used to provide dynamic charging currents and may improve performance. The resistors form a low pass filter with the capacitor, and values must therefore be determined by requirements for the application.

DC-Coupling

Figure 13 shows a recommended configuration for DC-coupling. Note that the common mode input voltage must be controlled according to specified values. Preferably, the CM_EXT output should be used as reference to set the common mode voltage.

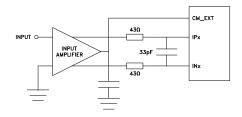


Figure 12: DC coupled input

The input amplifier could be inside a companion chip or it could be a dedicated amplifier. Several suitable single ended to differential driver amplifiers exist in the market. The system designer should make sure the specifications of the selected amplifier is adequate for the total system, and that driving capabilities comply with HMCAD1512 input specifications.

Detailed configuration and usage instructions must be found in the documentation of the selected driver, and the values given in figure 13 must be adjusted according to the recommendations for the driver.

AC-Coupling

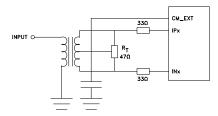


Figure 13: Transformer coupled input

A signal transformer or series capacitors can be used to make an AC-coupled input network. Figure 14 shows a recommended configuration using a transformer. Make sure that a transformer with sufficient linearity is selected, and that the bandwidth of the transformer is appropriate. The bandwidth should preferably exceed the sampling rate of the ADC several times. It is also important to minimize phase mismatch between the differential ADC inputs for good HD2 performance. This type of transformer coupled input is the preferred configuration for high frequency signals as most differential amplifiers do not have adequate performance at high frequencies. Magnetic coupling between the transformers and PCB traces may impact channel crosstalk, and must hence be taken into account during PCB layout.

If the input signal is traveling a long physical distance from the signal source to the transformer (for example a long cable), kick-backs from the ADC will also travel along this distance. If these kick-backs are not terminated properly at the source side, they are reflected and will add to the input signal at the ADC input. This could reduce the ADC performance. To avoid this effect, the source must effectively terminate the ADC kick-backs, or the traveling distance should be very short.

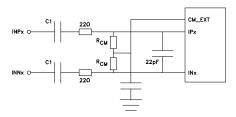


Figure 14: AC coupled input

Figure 15 shows AC-coupling using capacitors. Resistors from the CM_EXT output, RCM, should be used to bias the differential input signals to the correct voltage. The series capacitor, CI, form the high-pass pole with these resistors, and the values must therefore be determined based on the requirement to the high-pass cut-off frequency.

Note that Start Up Time from Sleep Mode and Power Down Mode will be affected by this filter as the time required to charge the series capacitors is dependent on the filter cut-off frequency.

Clock Input and Jitter Considerations

Typically high-speed ADCs use both clock edges to generate internal timing signals. In HMCAD1512 only the rising edge of the clock is used.

The input clock can be supplied in a variety of formats. The clock pins are AC-coupled internally, hence a wide common mode voltage range is accepted. Differential clock sources such as LVDS, LVPECL or differential sine wave can be utilized. LVDS/LVPECL clock signals must be appropriately terminated as close to the ADC clock pins as possible. For CMOS inputs, the CLKN pin should be connected to ground, and the CMOS clock signal should be connected to CLKP. CMOS input clock is not recommended above 200 MHz clock frequency. For differential sine wave clock input the amplitude must be at least \pm 0.8 Vpp. No additional configuration is needed to set up the clock source format.

The quality of the input clock is extremely important for high-speed, high-resolution ADCs. The contribution to SNR from clock jitter with a full scale signal at a given frequency is shown in equation 1.

$$SNR_{iitter} = 20 \cdot \log (2 \cdot \pi \cdot f_{IN} \cdot \epsilon_{t})$$
 (1)

where fIN is the signal frequency, and ϵt is the total rms jitter measured in seconds. The rms jitter is the total of all jitter sources including the clock generation circuitry, clock distribution and internal ADC circuitry.

For applications where jitter may limit the obtainable performance, it is of utmost importance to limit the clock jitter. This can be obtained by using precise and stable clock references (e.g. crystal oscillators with good jitter specifications) and make sure the clock distribution is well controlled. It might be advantageous to use analog power and ground planes to ensure low noise on the supplies to all circuitry in the clock distribution. It is of utmost importance to avoid crosstalk between the ADC output bits and the clock and between the analog input signal and the clock since such crosstalk often results in harmonic distortion.

The jitter performance is improved with reduced rise and fall times of the input clock. Hence, optimum jitter performance is obtained with LVDS or LVPECL clock with fast edges. CMOS and sine wave clock inputs will result in slightly degraded jitter performance.

If the clock is generated by other circuitry, it should be re-timed with a low jitter master clock as the last operation before it is applied to the ADC clock input.

Application Usage Example

This section gives an overview on how HMCAD1512 can be used in an application utilizing all active modes with a single clock source. The example assumes that a 1 GHz clock source is applied. A differential clock should be used, and can be generated from a single ended crystal oscillator, using a transformer or balun in conjunction with ac-coupling to convert from single ended to differential signal.

Start-up Initialization

The start-up sequence will be as follows:

- · Apply power
- Apply reset (RESETN low, then high, or SPI command 0x00 0x0001)
- Set power down (PD pin high or SPI command 0x0F 0x0200)

- Set LVDS bit clock phase (phase_ddr, register 0x42)) if other than default must be used (depends on the receiver).
- Select operating mode, for instance dual channel mode, and clock divider factor (SPI command 0x31 0x0102).
- Set active mode (PD pin low or SPI command 0x0F 0x0000)
- Select analog inputs, for instance input 1 on channel 1 and input 3 on channel 2 (SPI commands 0x3A 0202 and 0x3B 0808)

Change Mode

When changing operational mode, power down must be activated due to internal synchronization routines. A typical mode change will then be like this:

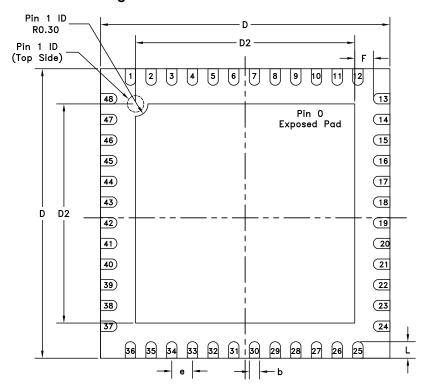
- Set power down (PD pin high or SPI command 0x0F 0x0200)
- Change mode to for example Single channel mode (SPI command 0x31 0x0001)
- Set active mode (PD pin low or SPI command 0x0F 0x0000)
- Select analog inputs, for instance Input 1 (SPI commands 0x3A 0202 and 0x3B 0202)

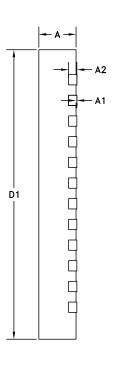
Table 25 gives an overview of the operational modes in this example and the SPI commands to apply for each mode.

Table 24: Overview of Operating Modes and Setup Conditions

Operating Mode	Sampling Speed (MSPS)	Clock Divider Factor	SPI command for Mode Selection and Clock Divider
Single channel	900	1	0x31 0x0001
Dual channel	450	2	0x31 0x0102

Select Analog Input


When an operational mode is selected, the analog inputs can be changed 'on-the-fly'. To change analog input one merely have to apply the dedicated SPI commands. The change will occur instantaneously at the end of each SPI command.


Table 25: Example of Some Analog Input Selections

Operating Mode	Signal Input Selection	SPI Commands
Single channel	IP2/IN2	0x3A 1010, 0x3B 1010
Dual channel	Ch1: IP1/IN1	0x3A 0404, 0x3B 0808
Duai Chaimei	Ch2: IP2/IN2	0X3A 0404, 0X3B 0606

Outline Drawing

BOTTOM VIEW

Table 26: 7x7 mm QFN 48 Pin (LP7) Dimensions

Symbol		Millimeter			Inch	
Symbol	Min	Тур	Max	Min	Тур	Max
Α	0.8	0.9	1	0.031	0.035	0.039
A1	0	0.02	0.05	0	0.0008	0.002
A2		0.2			0.008	
b	0.18	0.25	0.3	0.007	0.01	0.012
D		7.00 bsc			0.276 bsc	
D2	5.15	5.3	5.4	0.203	0.209	0.213
L	0.3	0.4	0.5	0.012	0.016	0.02
е		0.50 bsc			0.020 bsc	
F	0.2			0.008		

Package Information

Part Number	Package Body Material	Lead Finish	MSL [1]	Package Marking [2]
HMCAD1512	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	Level 2A	HAD1511 XXXX

[1] MSL, Peak Temp: The moisture sensitivity level rating classified according to the JEDEC industry standard and to peak solder temperature. [2] Proprietary marking XXXX, 4-Digit lot number XXXX

Notes: